The Free Power of gravity

- Low energy requirements gravity does most of the work

- High-capacity material handling

- Frees up valuable floor space
- Environmentally-friendly

- Low noise

Developed from Fuller® design* and technology, our air gravity conveying system uses the forces of gravity to do most of the work with no moving parts. Material is fluidized through a porous media with low pressure air. Material flow is achieved by sloping conveyor to match the fluidized angle of repose of the powdered material. At the correct slope, fluidized materials flow with the consistency of a liquid.

Our air gravity systems provide high-capacity material handling while offering many economical and environmental advantages. Energy requirements are minimal because only a small volume of air at a low pressure is required to move material. Since the system is installed overhead, valuable floor space and added headroom are available for other purposes. By eliminating the need for massive support members, it permits a flexibility of plant design not available with straight-line conveyors.

* Developed by Fuller Company in 1945 in cooperation with Huron Portland Cement.

Our conveyor is dust tight. As a result, the system is extremely friendly to the environment.

Noise level is extremely low in the area surrounding our conveyor as the system's air supply is the only moving part to generate noise, and it is generally located in a remotely insulated area to further reduce noise. Maintenance of our conveyor is very simple because there are no moving parts other than the air supply equipment, which also contributes to increased plant safety. conveyors require no lubrication.

Our typical conveyor applications

- Distribution from bucket elevators to storage silos
- Gathering under baghouses / precipitators
- Feed to process
- Feed to other conveyors
- Loadout from bulk silos to trucks, railcars or barges
- In-plant conveying
- Storage silo / bin withdrawal

The Principle of Fluidization:

Driving low-pressure, low-velocity air through and between particles of a dry bulk material, changing its behavior characteristics and making it flow more like a liquid than a solid

1

Without any fluidization, our conveyor would need to be inclined on an angle greater than the angle of repose to establish gravity flow.

With fluidization, gravity flow can be achieved at a greatly reduced slope of 8° or less.

Our conveying applications

Our conveying: quiet \& simple point-to-point transfer

- Positive flow regulation (low - high capacities)
- Quiet operation
- Low maintenance - no rotating parts in contact with materials being conveyed
- Fully fluidized gentle conveying action
- Minimized wear from

Our typical conveying system

Our air activated gravity conveying equipment can provide a design flexibility with many accessories and flow control devices to meet the needs of the any specific application.

Designed for dependability. Proven to perform.

Our system operation

- Air-activated gravity conveyor
- Fluidization of material on our media
- Fluidization reduces the angle of repose causing flow
- Example: A material with a normal angle repose of 45° with fluidization may flow like a liquid on a slope of 8° or less

Manufacturing standards

- Heavy-gauge steel sections with bent flanges
- Our conveyors are shipped in standard section lengths of 3 meters (9.85 feet)
- Standard widths of fluidized area is 100 to 850 mm (4 to 34 inches)
- Bolted airtight construction
- Optional media available for high temperature and highly abrasive materials
- There is no conveying length limitation to our conveyor based upon availability of headroom and proper slope

Our proprietary fabric

- Proprietary weave designed for air gravity conveyors
- Even permeability over the entire length of fabric
- Requires only one air connection every 30 meters (100 feet)
- No "dead" zones

Our conveying multiple inlet to multiple outlets

- Flexibility
- No additional conveyors needed to change directions
- Single Power Source
- One blower or fan is sufficient for system
- High Capacity / Long Distance
- Conveying volumes up to 2,460 cubic meters (87,000 cubic feet) per hour and conveying distances in the 100s of meters/feet

Our media and dimensions

Our Media Options		
Section	Material	Application
F	Woven 5-ply polyester	Standard up to $177^{\circ} \mathrm{C}\left(350^{\circ} \mathrm{F}\right)$
FN	Needle felt polyester non-woven	Standard non-silo bottom applications up to $177^{\circ} \mathrm{C}\left(350^{\circ} \mathrm{F}\right)$
KN	Needle kevlar non-woven	Standard non-silo bottom applications up to $246^{\circ} \mathrm{C}\left(475^{\circ} \mathrm{F}\right)$
K	Woven kevlar	Standard including silo bottom applications up to $246^{\circ} \mathrm{C}\left(475^{\circ} \mathrm{F}\right)$
GAX 19	Woven fiberglass	High temperature up to $454^{\circ} \mathrm{C}\left(850^{\circ} \mathrm{F}\right)$

Standard (Hi-top) Design										
Size	Capacity		B		C		D		Weight	
mm	cu.m/hr.	(1) cu.ft./hr.	mm	(1) in.	mm	(1) in.	mm	(1) in.	kg./m	Ib./ft.
100*	20	720	32	1.25	200	7.87	75	2.95	19	13
150*	34	1200	32	1.25	200	7.87	75	2.95	22	15
200	87	3060	32	1.25	300	11.81	75	2.95	36	24
250	165	5830	32	1.25	300	11.81	75	2.95	39	26
300	315	11125	32	1.25	400	15.75	75	2.95	46	31
350	450	15900	32	1.25	500	19.69	75	2.95	55	37
400	630	22250	32	1.25	500	19.69	75	2.95	58	39
480	1080	38140	38	1.50	560	22.05	75	2.95	66	44
600	1585	56000	57	2.25	600	23.62	100	3.94	80	54
850	2460	87000	76	3.00	910	35.83	100	3.94	123	83

[^0]
[^0]: Nominal capacity ratings are based upon loose poured bulk density of the material and proper application.
 (1) English dimensions and capacities are nominal

