SCREW FEEDERS

Screw Feeder

Capacity: 24 to $6,458 \mathrm{~L} . / \mathrm{h}$. Objectives: dosing of any kind of bulk materials

Our volumetric screw feeders offer a uniform, constant and controlled feeding of your powders held in a hopper. Thanks to the exchangeable screw design system, our feeders can handle a wide variety of materials with a gentle and precise feeding of free-flowing materials.
\VOLUMETRIC FEEDER

The volumetric feeder provides accurate feeding of a wide variety of bulk products. The dosing of ingredients is conducted through a dosing screw which conveys the volume of material to feed. The rotation speed can be handled by a frequency inverter. The feeding precision is about 7 to 8%.

DWEIGHT FEEDER

The weight feeder enables an automatic feeding of powdery or bulk materials by batch or in continuous process. The feeders are placed on a stable frame with a very efficient weighing system. This system works in gain-in-weight or loss-inweight mode and provides a metering accuracy of 1%.

'Frequency range: 45 to 100 H Hix

Dosing assembly
loss-in-weight
Dosing assembly
weight gain

Screw Feeder

Technical Layouts

- COMPLETE SCREWS RANGE
- Pigtail

Round section spiral without centre pipe Light materials, granular products, PVC, pellets, polymers in pellets.
$\stackrel{\text { Ribbon }}{\sim}$

Ribbon spiral on pipe

Heavy sticky materials, heavy oxides, clays.

- With shaft
\longrightarrow

Standard screw

Heavy fluid materials, metallic grains,

- AGITATORS RANGE

- pneumatic gate

Feeder screws	Application	Gear ratios	Rotation speed	Theoretical throughput	Precision*
Type		1/...	rev./min.	1./h.	g .
Pigtail nvいに	Light sticky materials: flour, sugar, cocoa, pellets, granular products, light and slightly sticky oxides	10	138	142	5 g
		15 (Standard)	92	95	
		20	69	71	
		28	49	51	
		40	35	35	
	Light materials, granular materials, pellets, PVC, polymers in pellets	10	138	103	3 g
		15 (Standard)	92	69	
		20	69	51	
		28	49	37	
		40	35	25	
With shaft	Heavy fluid materials, metallic granules	10	138	97	1 g
		15 (Standard)	92	64	
		20	69	48	
		28	49	34	
		40	35	24	

Technical Layouts

－FEEDER D11（size and capacity）

with forcio ventiation
FOR ScREW feber incine

Feeder screws	Application	Gear ratios	Rotation speed	Theoretical throughput	Precision＊
Type		1／．．．	rev．／min．	I．／h．	g ．
Pigtail ～～いい	Light sticky materials：flour， sugar，cocoa，pellets，granular products，light and slightly sticky oxides	10	138	523	5 g
		15 （Standard）	92	348	
		20	69	261	
		28	49	186	
		40	35	130	
	Light materials，granular mate－ rials，pellets，PVC，polymers in pellets	10	138	380	3 g
		15 （Standard）	92	253	
		20	69	190	
		28	49	135	
		40	35	95	
	Heavy fluid materials， metallic granules	10	138	356	1 g
		15 （Standard）	92	237	
		20	69	178	
		28	49	127	
		40	35	89	

[^0]－FEEDER D12（size and capacity）

Feeder screws	Application	Gear ratios	Rotation speed	Theoretical throughput	Precision ${ }^{\text {a }}$
Type		1／．．．	rev．／min．	1．／h．	g ．
Pigtail ～～しい	Light sticky materials：flour， sugar，cocoa，pellets，granular products，light and slightly sticky oxides	10	138	1，438	10 g
		15 （Standard）	92	959	
		20	69	719	
		28	49	513	
		40	35	359	
	Light materials，granular materials，pellets，PVC，poly－ mers in pellets	10	138	1，046	5 g
		15 （Standard）	92	697	
		20	69	523	
		28	49	373	
		40	35	261	
With shaft	Heavy fluid materials， metallic granules	10	138	1，273	1 g
		15 （Standard）	92	848	
		20	69	636	
		28	49	454	
		40	35	318	

-Technical Layouts

(- FEEDER D13 (size and capacity)

- IMPACT OF PARTICULE SIZE

Material references	Floor (Type 55)	Sugar (cristal $n^{\circ} 2$)	Plastic granules
Granulometry in $\mu \mathrm{m}$	$100 \mu \mathrm{~m}$	$500-700 \mu \mathrm{~m}$	$2-5 \mathrm{~mm}$
Product family	Fine	Crystal	Granules
Correction factor (feeding rate of the screw)	1.31	0.96	0.91

\triangle CALCULATION EXAMPLE OF RATES FOR CALCIUM CARBONATE . Customer data

Product to be metered	Calcium carbonate
Bulk density	0.7
Granulometry	$70 \mu \mathrm{~m}$
Product family	Fine
Type of coil	Screw with whaft
Correction factor	1.31
Wished actual flow rate	$155 \mathrm{l} . / \mathrm{h}$.

. Calculation formula
Theoretical throughput $=\frac{\text { Actual flow rate }}{\text { Correction factor }}=\frac{155}{1.31}=118$ L./h.
. Result

Type of feeder	D11
Motor reducing ratio	$1 / 28$
Theoretical throughput	$127 \mathrm{~L} . / \mathrm{h} .{ }^{*}$

M MASS FLOW RATES GRAPH WITH D11 FEEDER (PIGTAIL TYPE SCREW) BASED ON THE 3 FAMILIES

Screw Feeder

Load cells to ensure a Dosing screw constant weight

The feeders D10, D11 D12 and D13 are compatible with the installation of servo load cells.

Models	D10	D11	D12	D13
Tube ext. 0 in mm	33.7	42.4	76.1	114.3

Dosing accuracy < to 1%

Sealed flexible connection without weighing interfe rence

Disassembly and Cleaning

- RAPID DISASSEMBLY (STANDARD)

Design allowing rapid disassembly of the feeder to facilitate cleaning phases.
The standard design enables dismantling and provides easy access to all parts to perform the manual cleaning.

Mirror polished finishes that can be integrated for applications in food and cosmetics areas.

Some applications require frequent cleaning of the feeder either forchanges of materials and/or due to constraints of allergens, pigments, etc....
To respond to this industrial issue and in the context of offering sanitary equipment, option on its entire range of dosing.
This Easyclean option enables quick dismantling of all parts of the dispenser with aut us and This is guaranteed by the integration of rails and rollers on the flanges of the feeder.
The

Belt Feeder

Our belt feeder were specially designed for product continuous dosing/weighing. They are particularly suitable or such sectors as cement steel. minerals fertilizer production and food industry.

Capacity: up to $2 \mathrm{t} / \mathrm{hr}$.
Objectives : extraction and weighing

brasive materials.

Installed on load cells, vibrating feeder is used for loss-in-weight dosing.

- USE

Belt feeders capture the mass of material that passes over a measuring path. The timing contro adiusts the belt speed to ensure the desired flow.
They operate with a constant belt speed. The product weight is entered when passing on the belt.

TECHNICAL SPECIFICATIONS

Rates: the rates range varies by a factor of 1 to 10 .
The nominal flow rate depends directly on three factors:
Bandwidth
Belt speed
Layer thickness
The layer thickness is controlled by an adjustable deflector at the outlet of the feeding hopper.

- OPERATING MODE

Continuous weighing: the standard application for belt feeders is continuous dosing

© USE

The vibrating feeders consist of a vibrating base with the product flow trough. The flow rates and accuracy can be adjusted to complement the dimensioning of the trough.
Flow rates: depending on the dimensions of the trough, the product layer thickness is adjusted by the adjustment flap positioned at the hopper outlet.

- TECHNICAL SPECIFICATIONS

Dosing principle: gravimetric (loss-in-weight metering) or volumetric
Dosage device: vibrating trough
3 widths: 80 to 250 mm .
Fabrication feeding hopper and vibrating trough manufacturing: steel, stainless steel
Volume of the feeding hopper: custom-made - possibility of flow aid
Rectangular or tubular extraction
Possibility of powdering with output enlargement

- EXAMPLES OF IMPLEMENTATIONS
 management)

I+] Advantages

Product Distribution metered over a significant width Fast and effective cleaning

ROTARY AIRLOCK VALVES

\qquad

Σ cleaning products

D Petfood

】Insecticides

D Printing industry

】 $\overline{\text { Environmental technologies }}$

D stationery

$\bar{\lambda}$ Hygiene products and industrial

> The main function of a rotary airlock valve is to regulate the flow from one chamber to another while maintaining a good airlock condition. The material handled is usually dry free flowing powder, dust or granules. The rotary airlock valves are mainly used in the dust filtration field, the pneumatic conveying industry, for the pressure differentials or to control the rotor-stator gap.

D DROP THROUGH ROTARY AIRLOCK FEEDER

The drop through rotary airlock feeder are designed to feed and discharge in a controlled way powdery or granular products coming from silos, hoppers, pneumatic conveying installations, bag filters houses, cyclones. This rotary valve is adapted when a high throughput is required. The effective flow rates are very variable depending on the products flowing.

DBLOW THROUGH ROTARY AIRLOCK FEEDER

The blow through rotary feeder has been designed to feed and convey bulk products (powders and granules) in numerous applications. When the material tends to clog, this airlock valve is the ideal solution.

D ROTARY AIRLOCK FEEDER FOR WOOD PELLETS AND CHIPPINGS

This rotary airlock valve feeds and discharges, in a controlled way, wood pellets and chippings from silos, hoppers, pneumatic conveying installations, bag filter houses, cyclones.

I DUST ROTARY AIRLOCK FEEDER

The dust rotary airlock feeder is specially dedicated for a combined use with cycloseparators for silos, hoppers, dust filters, dust cyclones or even dosing systems. This rotary airlock feeder suits simple or undemanding industrial applications. Its main function is to be an airlock.

Rotary Airlock Feeder

© TECHNICAL SPECIFICATIONS
Manufacturing materials: cast iron body or stainlss steel
Surface treatment of the rotor: nickel plating, tefloning, hardened paddles Motorisation: direct or chain sprocket otor: steel or stainless stee
Fixed rotor speed: 10, 20, 30 revolutions/min.

Variable rotor speed: $4-35$ revolutions/min. Capacity: 2.2 to $19.5 \mathrm{~L} . / \mathrm{t}$.

Equipment

© DROP THROUGH ROTARY VALVE - 1502

10 rounds/min.					20 rounds/min.					30 rounds/min.				
$\begin{aligned} & \text { Flow rate } \\ & \mathrm{m}^{3} / \mathrm{h} . \end{aligned}$	$\begin{aligned} & \text { Load } \\ & \text { feaco } \end{aligned}$	$\begin{aligned} & \text { Power } \\ & \mathrm{KN} \end{aligned}$	Torque	$\begin{gathered} \text { Weght } \\ (k g a) \end{gathered}$		$\begin{aligned} & \text { Load } \\ & \text { fector } \end{aligned}$	$\begin{gathered} \text { Power } \\ \mathrm{KN} \end{gathered}$	Torgue	$\begin{gathered} \text { Weight } \\ \hline \text { ikg } \end{gathered}$	$\begin{gathered} \text { Flow rate } \\ \mathrm{m}^{3} / \mathrm{h} . \end{gathered}$	$\begin{aligned} & \text { Loadd } \\ & \text { facion* } \end{aligned}$	$\begin{aligned} & \text { Power } \\ & \mathrm{NW} \\ & \hline \end{aligned}$	Toraue	
1.1	0.85	0.37	190	73	1.98	0.75	0.5	155	58	2.6	0.65	0.5	110	58

© DROP THROUGH ROTARY VALVE - 200^{2}

10 rounds/min.					20 rounds/min.					30 rounds/min.				
Flow rate $\mathrm{m}^{3} / \mathrm{h} .$	$\begin{gathered} \text { Loed } \\ \text { factor } \end{gathered}$	Power	Torave	$\begin{gathered} \text { Weight } \\ \text { (kg) } \end{gathered}$	$\begin{aligned} & \text { Flow rate } \\ & \mathrm{m}^{3 / h} . \end{aligned}$	$\begin{aligned} & \text { Loadd } \\ & \text { factor } \end{aligned}$	$\begin{gathered} \text { Power } \\ \mathrm{kW} \end{gathered}$	Torque	Weight	$\begin{aligned} & \text { Fiow } \\ & \text { fate } \\ & \mathrm{m} / \mathrm{l} . \end{aligned}$	$\begin{aligned} & \text { Load } \\ & \text { factor } \end{aligned}$	$\underset{\substack{\text { Power } \\ \mathrm{kW}}}{ }$	Torque	Weight (kg)
2.8	0.85	0.37	190	88	4.86	0.75	0.5	155	73	6,3	0.65	0.75	150	73

- DROP THROUGH ROTARY VALVE - 250^{2}

10 rounds/min.					20 rounds/min.					30 rounds/min.				
$\begin{aligned} & \text { Fow rate } \\ & \mathrm{m}^{3} / \mathrm{h} . \end{aligned}$	$\begin{aligned} & \text { Load } \\ & \text { facer- } \end{aligned}$	$\begin{aligned} & \text { Power } \\ & \mathrm{KNv} \end{aligned}$	Torgue	$\begin{gathered} \text { Weight } \\ \text { (kg) } \end{gathered}$	$\begin{aligned} & \text { Flow rate } \\ & \mathrm{m}^{3} / \mathrm{h} . \end{aligned}$	$\begin{aligned} & \text { Load } \\ & \text { Lactor } \end{aligned}$	$\begin{aligned} & \text { Power } \\ & \mathrm{kW} \end{aligned}$	Toraue	$\begin{gathered} \text { Weight } \\ \hline(k 9) \end{gathered}$	$\begin{array}{\|c} \text { How rice } \\ \mathrm{m}^{3} \mathrm{~h} . \end{array}$	$\begin{aligned} & \text { Lood } \\ & \text { fector } \end{aligned}$	$\begin{aligned} & \text { Power } \\ & \mathrm{KW} \end{aligned}$	Torgue	$\begin{gathered} \text { Weight } \\ \text { (kol } \end{gathered}$
5.6	0.85	0.5	300	140	9.81	0.75	0.75	250	123	12.8	0.65	1.1	240	123

- DROP THROUGH ROTARY VALVE - 300^{2}

10 rounds/min.					20 rounds/min.					30 rounds/min.				
Flow rate	Load	$\begin{aligned} & \text { Power } \\ & \text { nN } \end{aligned}$	Torque	$\begin{aligned} & \text { Weight } \\ & \hline(k g) \end{aligned}$	Flow rate	$\begin{gathered} \text { Loadd } \\ \text { fracor } \end{gathered}$	$\begin{aligned} & \text { Power } \\ & \mathrm{kW} \end{aligned}$	Torque	$\begin{aligned} & \text { Weight } \\ & (k(k))^{2} \end{aligned}$	$\begin{aligned} & \text { Fiow } \\ & \text { Rete } \\ & \mathrm{m}^{2} / \mathrm{h} \end{aligned}$	$\begin{aligned} & \text { Load } \\ & \text { factoc } \end{aligned}$	$\begin{aligned} & \text { Power } \\ & \text { KN } \end{aligned}$	Torque	$\begin{aligned} & \text { Weight } \\ & \hline(k g) \end{aligned}$
9.9	0.85	0.75	400	195	17.6	0.75	1.1	360	181	22.8	0.65	1.5	300	181

[^1]
Drop Through Rotary Airlock Feeder

© EXAMPLES OF INDUSTRIAL APPLICATIONS
\boxtimes Application under hopper

\triangle Application under filter to insure the sealing and evacuation of fine particles

2 Application under silo

(λ Application under the pneumatic conveying feeding system to load the material into the piping

D Application above the filling stations to dose the roduct

Rotary Airlock Feeder

Blow Through

(1) TECHNICAL SPECIFICATIONS

Manufacturing materials: Cast iron body or stainless steel Surface treatment of the rotor: nickel plating, tefloning, hardened vanes Motorisation: direct or chain sprocket
Rotor: steel or stainless steel
Fixed rotor speed: $10,20,30$ revolutions $/ \mathrm{min}$.
Variable rotor speed: 4-35 revolutions/min.
Capacity: 2.2 to $19.5 \mathrm{~L} . / \mathrm{t}$.

$1\rangle$ Surface treatment of the Surface treatment of the
rotor: chromium and nickel plating, tefloning

The blow through adaptor enables to meter and/or feed material from a hopper or a bin into a pneumatic conveying line and to restrict or revent conveying air from blowing up into the hopper or bin

Cast iron body or stainless
$\underset{\text { steel Al| is } 1304 \mathrm{~L} / 316 \mathrm{~L}}{\text { L }}$

ATEX version for a tion ATEX version for a high
explosion resistance and at the passage of flame

Advantages

- BLOW THROUGH ROTARY VALVE RANGE

Models	ERL 05	ERL 10	ERL 15	ERL 20	ERL 35
Capacity (litres/rev.)	5	9	14	20	38
Feeding flange in mm.	170×122	135×238	148×276	196×337	284×569
Differential pressure max.	0.7	0.7	0.7	0.7	0.7
Service temperature	$-20^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}$				

- BLOW THROUGH ROTARY VALVE - ERL 10

BLOW THROUGH ROTARY VALVE - ERL 05

- BLOW THROUGH ROTARY VALVE - ERL 15

Blow Through Rotary Airlock Feeder

D BLOW THROUGH ROTARY VALVE - ERL 20

10 rounds/min.				20 rounds/min.				30 rounds/min.			
$\begin{aligned} & \text { Fow rite } \\ & \mathrm{m}^{2} / \mathrm{h} . \end{aligned}$	$\begin{aligned} & \text { Load } \\ & \text { factor } \end{aligned}$	$\begin{aligned} & \text { Power } \\ & \text { kN } \end{aligned}$	Torque (Nm)	$\begin{aligned} & \text { How rite } \\ & \mathrm{m}^{2} / \mathrm{c} \end{aligned}$	$\begin{aligned} & \text { toad } \\ & \text { tactor } \end{aligned}$	$\begin{aligned} & \text { Power } \\ & \text { kN } \end{aligned}$	$\begin{aligned} & \text { Torque. } \\ & \text { (Nm) } \end{aligned}$	Flow rate $\mathrm{m}^{3} / \mathrm{h}$.	$\begin{aligned} & \text { toad d } \\ & \text { fractor } \end{aligned}$	Power Kw	Torque. (Nm):
12	0.85	0.55	472	24	0.75	1.1	328	36	0.65	1.1	308

© BLOW THROUGH ROTARY VALVE - ERL 35

10 rounds/min.				20 rounds/min.				30 rounds/min.			
Flow rate $\mathrm{m}^{3} / \mathrm{h}$.	$\begin{aligned} & \text { Load } \\ & \text { factor } \end{aligned}$	$\begin{aligned} & \text { Power } \\ & \text { nk } \end{aligned}$	$\begin{aligned} & \text { Torque } \\ & \text { (Nam) } \end{aligned}$	$\begin{aligned} & \text { How rate } \\ & \mathrm{m}^{3} / \mathrm{h} \end{aligned}$	$\begin{aligned} & \text { Load } \\ & \text { taco } \\ & \hline \text { taco } \end{aligned}$	$\begin{aligned} & \text { Power } \\ & \mathrm{KNW} \end{aligned}$	$\begin{aligned} & \text { Torque } \\ & \text { (Nm). } \end{aligned}$	$\begin{aligned} & \text { Flow rate } \\ & \mathrm{m}^{3 / h} . \end{aligned}$	$\begin{aligned} & \text { load } \\ & \text { foctor } \end{aligned}$	$\begin{aligned} & \text { Power } \\ & \text { KN } \end{aligned}$	$\begin{aligned} & \text { Torque } \\ & (\mathrm{Nm}) \end{aligned}$
22.8	0.85	1.1	929	45.6	0.75	1.5	633	68.4	0.65	2.2	630

USE
The blow through rotary airlock feeders are designed to suit to pneumatic conveying processes. They can be mounted inline into a pneumatic conveying line.

Due to the space available under the production machines, the blow through rotary airlock feeders are an efficient solution. The added value of those rotary valves is to transfer sticky materials. The air conveying flow, through the rotary valve, ensures the cleaning of the rotor by taking off particles stuck on the walts.

- ADJUSTABLE PADDLES

Adjustment of the rotor vane depending on the properties of each material. A standard rotor is composed by 8 fixed vanes. Nevertheless, it is possible to configure the rotorrs, for making rotary valves suitable for the material, by adjusting vanes.

D DEGASSING NOZZLE

Deaeration system of the body to avoid the pressure return. The degassing chambers are specially designed for being used in pneumatic conveying systems. It permits to avoid the pressure return into the piping and the hopper from where the product is extracted.

D PRECISION SHIM

For a more accurate feeding and the maintaining of a high rotation speed. The precision shims are fixed directly onto the roto and reduce the rotay airlock valve displacement by a fine feeding or the maintaining of high rotation speed.

D SPEED SET BOX

To facilitate the material introduction in the conveying pipeline.
The speed set box is settled under the rotary airlock valve to introduce the material in the pneumatic conveying

DOVERFILL CONTROLLER

To ensure a rotary airlock valve with large displacement.
The overfill controller has been specially designed for revolving materials or for applications needing a rotary airlock valve with large displacement.

\square DEGASSING BOX

To evacuate the air.

The degassing box is designed for pneumatic conveying applications to ensure the blower air evacuation returning by the rotary airlock valve.

\square ROTOR WITH SCRAPER PADDLES

To eliminate sticky materials from the rotary airlock valve body The rotor with scraper vanes helps to get a very strong sealing and a full cleaning of the rotary airlock valve body for very sticky materiats.

D ROTATION SENSOR

The box indicates a number of rotor rotations.

The box is an indicator aimed to check the airlock valve rotation speed and to identify any problems in cas the velocity is too low.

Rotary Valve

- TECHNICAL SPECIFICATIONS

Service temperature with special version: $-20-150^{\circ} \mathrm{C}$ Rotor: wear resistant steel HARDOX
Certifications: the rotary valves are designed for wood comCertifications: the rotary valves are iesigned for wood com-
bustible industry and are in conformity with ONORM M7132, ONORM M7133, ONORM M7135, ONORM M7136, ONORM M7137

Models	A^{*}	D	E^{*}	F^{*}	G	Motor speed (rpm)	Motor Power (kW)	Dosing flow rate (L./t.)
RWN 02	500	220	248	325	131	20	0.75	2.2
						30	1.1	
RWN 05	540	280	237	340	162	20	1.1	5.4
						30	1.5	
RWN 10	-	360	490	792	188	20	1.5	10.9
						30	2.2	
RWN 20	-	455	561	855	226	20	2.2	19.5
						30	3.0	

Rotary Valve

Dust Collection

(1) TECHNICAL SPECIFICATIONS

Certifications: ATEX certified rotary valve for Zone 20 ins door and Zone 2 and 21 outdoor Resistant: a pressure up to 10 bars ATEX 95 type for explosive atmospheres Flange connection: DN200/250 (round/square) Capacity: 6 to 8.5 liters per revolution Pressure: differential pressure 0.5 bar Shape of flanges: round or square, comoliant with PN10 DIN2576

- OPERATING MODE

. The rotary airlock valve has a large opening for the perfor mance of the rotor with 6 flexibles vanes made of polyure thane and which are adjustable and interchangeable. The standard rotary airlock valve is adapted to materials handling the temperature up to $70^{\circ} \mathrm{C}$ and a maximum pressure difference of 0.5 bar .
-The stators of those rotary airlock valves have been tested at a hydraulic pressure of 20 bars, which is the equivalent of the resistance to the internal shocks of 10 bars.

Capacity: 6 to 8.5 liters/revolution Objectives: regulate and dose the conveyed materials

Our dust lock valve has a dedicated design for
filter applications. The standard inlet and outlet flanges are drilled in conformity with PN10 and are suitable for both round and souare counter flanges. This rotary valve is suitable for simple and undemanding industrial applications, where its main function is to be an airlock.

(1) Minimal air leakage

\triangle Flame proof certification ATEX 20-21-22

Extraction

Models	Litres $/$ Tour	Inlet \& outlet	A	ØA	ØB	OC	C	D	E	F	G	X	RR	SS
ERD 200	6	200	200	200	295	340	320	$8 \times \varnothing 23$	14	310	155	22.5°	465	176
ERD 250	8.5	250	250	250	350	406	370	$12 \times \varnothing 23$	15	325	162.5	30°	485	196

Σ Under silo, salt

DUnder a dust collector
\searrow food product

Under cyclone, resin transter

L Feeding a pneumatic conveying

\searrow Feeding for the conditioning

I Under hopper, food ingredients

Σ Pharmaceutical products

The butterfly valve is a system which moves the spade by rotation around a perpendicular axis perpendicular to the direction of flow and, in open position, is bypassed by the fluid. Its use is perfect for non-viscous liquids. The butterfly valve is used in automatic or manual installations with stainless steel. This equipment limits the loss-in-weight and offers a constant product flow rate.

D ROTARY VALVE - MODEL VRP

The rotary valve has been designed to respect rigourous sanitary requirements and to be disassembled quickly by the operator. The rotary valves are suitable for pharmaceutical applications to cut off or control the products flow. They offer a continuous powders and granulates feeding as well as a uniform dosing.
© SLIDE GATE VALVE - MODEL VGP

The slide gate is one of the most effective ways to close a flow path in a material handling line. The slide gate valve is designed for a complete or relative seal and its control is perfectly linear.

The pinch valve fits perfectly with conveying application by ensuring the regula tion and dosing of powdery products without any loss of pressure.
This pinch valve enables the free flowing of the material. The oval shape of the
\ PINCH VALVE - MODEL VMP
 valve body guarantees an efficient and quick closing of the valve. The pinch valves are ideal to stop powders, grains, fibers and dense mixtures flow.

The rotary valve has been designed to cut off and control the free-flowing products in pharmaceutical industries. They enable a continuous feeding of powders and granulates with a uniform dosing.

The valve is composed of two elements. The buttertly is adapted to execute a coarse dosing while the little rotor performs more accurate dosing. The maximum accuracy achievable is around ± 20 grams.
The valve can be combined with dosing or weighing systems.
This double valve can be supplied with a rubber seal between the paddles and the rotor to make it suitable for applications where the pressure rises to 0.5 bar.

Models	D1	D2	S	6	H		L	M	N	0
DN 100	150	180	38	298	130	93	205	223	250	80
DN 150	200	230	38	348	155	93	255	248	250	80
DN 200	250	280	38	398	180	93	305	273	250	80
DN 250	306	330	40	488	213	122	366	335	310	105

Butterfly Valve

Manual, Pneumatic_Actuator Motoreductor
(1) TECHNICAL SPECIFICATIONS

Manufacturing: cast iron or stainless steel Diameter: DN 100 to 400

Objectives: discharge, sealing and closing

The butterfly valves are used to close tanks, hoppers and silos containing powder or granular materials. The butterfly valves are used in every installations needing to stop the materials flowing displaced by gravity or by pneumatic conveying.

 16 bar -

Options

- PNEUMATIC ACTUATOR

Motorized pneumatic valve operating mode:

Double acting: a pneumatic cylinder, piston rack type, drives the valve shaft with a $1 / 4$ turn movement. A distributor sends a pneumatic signal alternatively in one of the two cylinder chambers to open or close the valve

- Single acting: the pneumatic cylinder is equipped with piston compression springs. The pneumatic signal executes only one of the two mouvements of opening and closing, the second one being operated by the springs pressure. This type of operating mode helps to provide a safety position in case of power failure.
- OPTION OF REINFORCED SEALING - Inflatable seat

Some applications need significant sealing action under vaccum or pressure. The inflatable seat technology ensures this result.

Our butterfly valves use air pressure to expand the seal against the dics, providing an even-distribution for a bubble tight seal. Since the seat makes only causal contact with the disc during valve opening and closing, there is minimal disc impingement. This is unlike conventional butterfly valves where disc impignement leads to shaving of the seat which decreases operational performance. This option increases the valve life and its efficiency.

- OPTION OF POSITIONER TO FEED BY CONTROL SIGNAL 4-20 mA

The pneumatic actuator is set up with a controler for 4-20 mA which adjusts the opening angle of the butterfly This technology feeds the material and regulates the flow.

D FLANGE CONNECTION

Valve conception with flange.
Valve conception with flange.
Tri-clamp system for apolications where the valve dismantling is important for the cleaning operations.

RESISTANCE TO CLEANING AGENTS
The design highly respects granular products.
the butterfly vaves are resistant to agressive cleaning agents and other chemical products.

D EXCHANGABLE ACTUATORS

ror a sanitary using in food and pharmaceutical industries.

ors by which the vave can be operated: manual single or double acting pneumatic actuator.

HIGH TEMPERATURE RESISTANCE

operating temperature up to $205^{\circ} \mathrm{C}$.

BFM FLEXIBLE CONNECTION

The quality of the stainless steel (316 L) and the valve disc enable food and pharmaceutical applications. EPDM viton rubber.

D4-20 mA
Dosing specificity

Slide Gate Valve

- ROUND SIZE VALVE

VGPRDO400

- RECTANGULAR SIZE VALVE

Models	Oflow area A	OB	OC	D	E	$N^{\bullet} E$	OF	Botts	G	H	Kg
VGPRDO150	150	165	261	15.5	115	2	12.5	M10	455	113	14
VGPRDO200	200	215	311	15.5	93,3	3	12.5	M10	555	113	18
VGPRD0250	250	265	361	15.5	110	3	12.5	M10	650	113	22
VGPRDO300	300	315	431	23	128,3	3	12.5	M10	765	113	30
VGPRD0350	350	365	481	18	89	5	12.5	M10	900	125	40
VGPRDO400	400	415	531	15.5	100	5	12.5	M10	1,000	125	46

© SLIDE GATE VALVE WITH STANDARD FLANGE (for difficult applications)
DN (mm.)

DN (mm)	50	65	80	100	125	150	200	250	300	350	400	500	600
σ external flange (mm.)	165	185	200	220	250	285	340	395	445	505	565	670	780
σ bolts (mm.)	125	145	160	180	210	240	295	350	400	460	515	620	725
Front dimensions (mm.)	43	46	46	52	56	56	60	68	78	80	80	90	100
Number through-holes	-	-	4	4	4	4	4	6	4	6	6	8	8
Number tapped holes	4	4	4	4	4	4	4	6	8	10	10	12	12
Bolts size	M16	M16	M16	M16	M16	M20	M20	M20	M20	M20	M24	M24	M27
B°	45	45	22.5	22.5	22.5	22.5	22.5	15	15	11.25	11.25	9	9
Screw size (mm.)	14	16	10	12	12	14	16	18	18	18	20	24	24

12 models (013 to 0200)

FDA manufacturing
Objectives: complete shut off or flow control

The pinch valves provide the ability to control the flow of a fluid through an uninterrupted flow path for installation of pneumatic conveying. Economic, imple to implement and with low maintenance time, these pinch valves are the ideat solution for the passage of liquid, gas or powder materials by ensube adapted at several applications: acids, bases (phosphates, soda ammonia be ada ...) viscous or abrasive liquids, food liquids or powders.

- OPERATING MODE

The pinch valves are the solution for isolating and regulating abrasive, corrosive and fibrous products such as granulates, powder, etc.

Position $N^{1} 1$:
The valve is in open position. tis inner section is ident
to the one of the piping.

- TECHNICAL SPECIFICATIONS Valve body manufacturing: aluminum alloy Connection mouths manufacturing: aluminum, hardened carDon steel or stainless steel 304 L/316 L
Maximum operating pressure: 3.5 bars Maximum inflation pressure : 6.0 bars Maximum differential pressure: 2.5 bars

models	A	в	c	D		E	F	G	H	J	L	м	N	Kg
				Diam.	No.									
VMP 013	13	-	-	-	-	-	-	1/8"	42	-	18	1/2"	120	0.40
VMP 020	20		-		.	.	-	1/8" ${ }^{\prime \prime}$	50		20	$3 / 4^{\prime \prime}$	130	0.50
VMP 025	25	-	-	.	-	-	-	1/8"	56	-	22	$1^{\prime \prime}$	130	0.70
VMP 032	32	-	-	\cdot	-	-	-	$1 / 8^{\prime \prime}$	70	.	25	1-1/4*	165	1.10
VMP 040	40	110	150	M 16	4	12	178	1/8"	-	99	-	$1+1 / 2^{\prime \prime}$	202	2.20
VMP 050	50	125	165	M 16	4	15	190	$1 / 4^{\prime \prime}$	-	120	.	$2^{\prime \prime}$	214	3.40
VMP 065	65	145	185	M 16	4	15	225	1/4"	-	138	-	2-1/2"	230	4.00
VMP 080	80	160	200	M 16	4	15	270	1/4*	-	180	-	3^{*}	294	5.40
VMP 0100	100	180	220	M 16	4	15	310	1/4"	-	214	-	$4^{\prime \prime}$	334	7.60
VMP 0125	125	210	250	M 16	4	15	350	$1 / 4^{\prime \prime}$	-	250	-	-	-	10.20
VMP 0150	150	240	285	M 16	4	18	396	$1 / 4^{\prime \prime}$	-	285	-	-		15.60
VMP 0200	200	295	340	M 16	4	25	460	1/4"	-	374	-	-	-	22.80

Ex

Available in version
ATEX zone 22

[^0]:

[^1]:

